低吸附相关产品
Proteosave™SS

产品介绍

Proteosave™是一种采用由 S-BIO 独自创新开发出的光交联超亲水性聚合物,固定在塑料容器内部使其形成高密度亲水基团,能够有效抑制蛋白质和肽的非特异性吸附的产品。

特征

减少样品损失,防止从容器中析出溶出物

在塑料容器内部均匀地涂抹光交联超亲水性聚合物、並风干以及通过 UV 照射,使涂膜硬化,并制造高密度亲水基团表面,从而抑制蛋白质和肽的非特异性吸附,减少样品损失,并进一步防止从容器中析出溶出物。

耐有机溶剂性与耐热性也大幅度提升

通过光交联与基体之间产生共价键,使得传统的涂抹难以实现的耐有机溶剂性和耐热性也得以保持。

用途

新药研究・生命科学 研究

蛋白质解析

合成・保存

  • 细胞生成蛋白质的保存、细胞的添加物以及蛋白质的合成
  • 减少重要样品中的蛋白质的损失

规格

Proteosave™ (耐有机溶剂 耐热型)
产品编号产品名称规格包装
个/包
个/箱
MS-4205MZProteosave™ 0.5mL微管未滅菌100/包
500/箱
MS-4255MZProteosave™ 0.5mL微管放射線滅菌100/包
500/箱
MS-4215MZProteosave™ 1.5mL微管未滅菌100/包
500/箱
MS-4265MZProteosave™ 1.5mL微管放射線滅菌100/包
500/箱
MS-4220MZProteosave™ 2.0mL微管未滅菌100/包
500/箱
MS-4270MZProteosave™ 2.0mL微管放射線滅菌100/包
500/箱
MS-4201XZProteosave™ 0.5mL细管未滅菌50/包
500/箱
MS-4202XZProteosave™ 1.5mL细管未滅菌50/包
500/箱

附注

  • 保管温度:常温 有效期:制造后 2年
Proteosave™
产品编号产品名称规格包装
个/包
个/箱
MS-52150Z※Proteosave™ 15mL离心管未滅菌5/包
100/箱
MS-52550ZProteosave™ 50mL离心管已经过放射线灭菌5/包
100/箱
MS-8296FZProteosave™ 96F板无盖,未杀菌5/包
50/箱
MS-8296VZProteosave™ 96V板无盖,未杀菌5/包
20/箱
MS-82962RZProteosave™
96V2mL深孔板
U 型底,无盖,已经过放射线灭菌3/包
15/箱
定制生产
MS-8296KZ
Proteosave™ 96F黒板无盖,未杀菌5/包
50/箱
MS-3296UZProteosave™ 96U板无盖,未杀菌5/包
50/箱

附注

  • 保管温度:常温 有效期:制造后 2年
  • ※规格可能温度:-80℃~40℃

文献介绍

【微管 (MS-4205M,MS-4255M,MS-4215M,MS-4265M 任选其一)】

1. YOSHIDA, Mitsutaka, et al. Preferential capture of EpCAM‐expressing extracellular vesicles on solid surfaces coated with an aptamer‐conjugated zwitterionic polymer. Biotechnology and bioengineering, 2018, 115.3: 536-544.
2. ARISAKA, Yoshinori, et al. A heparin-modified thermoresponsive surface with heparin-binding epidermal growth factor-like growth factor for maintaining hepatic functions in vitro and harvesting hepatocyte sheets. Regenerative Therapy, 2016, 3: 97-106.
3. PANDEY, Kiran; NAHAR, Ashrafun; KADOKAWA, Hiroya. Method for isolating pure bovine gonadotrophs from anterior pituitary using magnetic nanoparticles and anti-gonadotropin-releasing hormone receptor antibody. Journal of Veterinary Medical Science, 2016, 78.11: 1699-1702.
4. HAMAMURA, Kensuke, et al. ANNALS EXPRESS: Simple quantitation for potential serum disease biomarker peptides, primarily identified by a peptidomics approach in the serum with hypertensive disorders of pregnancy. Annals of Clinical Biochemistry: An international journal of biochemistry and laboratory medicine, 2015, 0004563215583697.
5. IZAKI, Shunsuke, et al. Feasibility of Antibody–Poly (Glutamic Acid) Complexes: Preparation of High-Concentration Antibody Formulations and Their Pharmaceutical Properties. Journal of pharmaceutical sciences, 2015, 104.6: 1929-1937.
6. OGISO, Hideo; TANIGUCHI, Makoto; OKAZAKI, Toshiro. Analysis of lipid-composition changes in plasma membrane microdomains. Journal of lipid research, 2015, 56.8: 1594-1605.
7. ICHIKAWA, Shunsuke, et al. Cellulosomal carbohydrate-binding module from Clostridium josui binds to crystalline and non-crystalline cellulose, and soluble polysaccharides. FEBS letters, 2014.
8. KADOKAWA, Hiroya, et al. Gonadotropin-releasing hormone (GnRH) receptors of cattle aggregate on the surface of gonadotrophs and are increased by elevated GnRH concentrations. Animal reproduction science, 2014, 150.3: 84-95.
9. UCHIDA, Yasuo, et al. A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Fluids and Barriers of the CNS, 2013, 10.1: 21.
10. NAGAI, Yutaka; TAKAO, Masashi. Monoclonal antibody to human epithelial cell adhesion molecule and method for detecting circulating tumor cells using the same. U.S. Patent Application 14/085,205, 2013.
11. TAKAO, Masashi; NAGAI, Yutaka; TORII, Tokiji. Cysteine-Poor Region-Specific EpCAM Monoclonal Antibody Recognizing Native Tumor Cells with High Sensitivity. Monoclonal antibodies in immunodiagnosis and immunotherapy, 2013, 32.2: 73-80.
12. YASUNO, K., et al. Development of Podocyte Injuries in Osborne–Mendel Rats is Accompanied by Reduced Expression of Podocyte Proteins. Journal of comparative pathology, 2013, 149.2: 280-290.
13. TSUCHIYA, Hikaru; TANAKA, Keiji; SAEKI, Yasushi. The parallel reaction monitoring method contributes to a highly sensitive polyubiquitin chain quantification. Biochemical and biophysical research communications, 2013, 436.2: 223-229.
14. KUROKAWA, Kenji, et al. Novel bacterial lipoprotein structures conserved in low-GC content Gram-positive bacteria are recognized by Toll-like receptor 2. Journal of Biological Chemistry, 2012, 287.16: 13170-13181.
15. UMEMURA, Hiroshi, et al. Identification of a high molecular weight kininogen fragment as a marker for early gastric cancer by serum proteome analysis. Journal of gastroenterology, 2011, 46.5: 577-585.
16. KAWAKAMI, Hirotaka, et al. Dynamics of absolute amount of nephrin in a single podocyte in puromycin aminonucleoside nephrosis rats calculated by quantitative glomerular proteomics approach with selected reaction monitoring mode. Nephrology Dialysis Transplantation, 2011, gfr492.
17. TAKAO, Masashi; TAKEDA, Kazuo. Enumeration, characterization, and collection of intact circulating tumor cells by cross contamination‐free flow cytometry. Cytometry Part A, 2011, 79.2: 107-117.
18. FUKUMOTO, Hiroaki, et al. High-molecular-weight β-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. The FASEB Journal, 2010, 24.8: 2716-2726.
19. ICHIKAWA, S.; KARITA, S. Characterization of Family 3 Carbohydrate-binding Module from Clostridium josui. In: Proceedings of the Second International Workshop on Regional Innovation Studies: (IWRIS2010). Graduate School of Regional Innovation Studies, Mie University, 2010. p. 5-8.

【离心管 (MS-52150,MS-52550任选其一)】

20. ISHII, Takashi, et al. Increased cerebrospinal fluid complement C5 levels in major depressive disorder and schizophrenia. Biochemical and biophysical research communications, 2018, 497.2: 683-688.
21. 21. MATSUMURA, Takayuki, et al. Venom and Antivenom of the Redback Spider (Latrodectus hasseltii) in Japan. Part I. Venom Extraction, Preparation, and Laboratory Testing. Japanese journal of infectious diseases, 2018, 71.2: 116-121.
22. 22. HIDESE, Shinsuke, et al. Cerebrospinal fluid neural cell adhesion molecule levels and their correlation with clinical variables in patients with schizophrenia, bipolar disorder, and major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 76: 12-18.
23. YOSHIMOTO, Shogo, et al. An Acinetobacter trimeric autotransporter adhesin reaped from cells exhibits its nonspecific stickiness via a highly stable 3D structure. Scientific Reports, 2016, 6.
24. HATTORI, Kotaro, et al. Increased cerebrospinal fluid fibrinogen in major depressive disorder. Scientific reports, 2015, 5: 11412.
25. WATANABE, H., et al. Controlled release of a protein using a ceramic carrier and zinc ions as a novel approach to the treatment of osteoporosis. In: Key Engineering Materials. 2015. p. 332-337.
26. IHARA, Yuta; OHTA, Hiroyuki; MASUDA, Shinji. A highly sensitive quantification method for the accumulation of alarmone ppGpp in Arabidopsis thaliana using UPLC-ESI-qMS/MS. Journal of plant research, 2015, 128.3: 511-518.
27. KIM, Jong-Myong, et al. Highly Reproducible ChIP-on-Chip Analysis to Identify Genome-Wide Protein Binding and Chromatin Status in Arabidopsis thaliana. In: Arabidopsis Protocols. Humana Press, 2014. p. 405-426.

【产品编号MS-8296F:96孔平底板】

28. 28. FURUGORI, Taketoshi; MORISHIMA, Yoshiyuki. PHARMACEUTICAL COMPOSITION FOR PROMOTION OF FIBRINOLYSIS. U.S. Patent Application No 15/538,676, 2017.
29. FUKAZAWA, Tominaga; YAMAZAKI, Yuri; MIYAMOTO, Yohei. Reduction of non-specific adsorption of drugs to plastic containers used in bioassays or analyses. Journal of pharmacological and toxicological methods, 2010, 61.3: 329-333.

【产品编号MS-8296K:96孔平底黒板】

30. 30. OBAYASHI, Yumiko; WEI BONG, Chui; SUZUKI, Satoru. Methodological Considerations and Comparisons of Measurement Results for Extracellular Proteolytic Enzyme Activities in Seawater. Frontiers in microbiology, 2017, 8: 1952.
31. ANDOU, Takashi, et al. RNA detection using peptide-inserted Renilla luciferase. Analytical and bioanalytical chemistry, 2009, 393.2: 661-668.

【其他 (论文中无产品标号和产品名称的记载)】

32. KUBOTA, Hiroyuki, et al. Reduction in IgE reactivity of Pacific mackerel parvalbumin by heat treatment. Food chemistry, 2016, 206: 78-84.
33. KASUGA, Kie. Comprehensive analysis of MHC ligands in clinical material by immunoaffinity-mass spectrometry. In: The Low Molecular Weight Proteome. Springer New York, 2013. p. 203-218.
34. YAMASHITA, Kazuyuki; SHIROKI, Masahiro. Medical or biochemical resin composition and resin molded product. U.S. Patent Application 13/469,768, 2012.
35. GOTOH, Akiko, et al. Evaluation of adsorption of urine cystatin C to the polymer materials on the microplate by an antigen capture enzyme-linked immunosorbent assay. Clinica Chimica Acta, 2008, 397.1: 13-17.

有关生物技术产品的咨询和资料请求,请点击此处。

TEL:
+81-3-5462-4831
FAX:
+81-3-5462-4835

※接待时间 工作日 9:00~17:40(日本时间)

咨询前请务必阅读。